This is a demo store. No orders will be fulfilled.

Controlled release mechanism of off-flavor compounds in Bacillus subtilis BSNK-5 fermented soymilk and flavor improvement by phenolic compounds

FOOD RESEARCH INTERNATIONAL [2025]
Miao Hu, Yaxin Gao, Weimin Meng, Pengfei Zhang, Jiao Wang, Zifan Yuan, Bei Fan, Fengzhong Wang, Shuying Li
ABSTRACT

Bacillus subtilis is the primary strain used in fermented soy products. The applicant fermented soymilk with the laboratory strain B. subtilis BSNK-5 to enhance nutrient density. However, prolonged fermentation caused rapid deterioration in flavor, resulting in an off-flavor poorly accepted by consumers, limiting its industrial application. Studies identified isovaleric acid (IVA), isobutyric acid (IBA), and 2-methylbutyric acid (2-MBA) as the main off-flavor compounds. The mechanism controlling off-flavor release remains unclear. Therefore, soybean protein was used as a model to investigate off-flavor release by analyzing binding percentage, physicochemical properties, conformation, and interaction forces. The modification of off-flavor by phenolic compounds was also examined. Results showed that soybean protein bound over 90 % of the flavor compounds, including a 98.6 % binding rate for IVA. Binding between soybean protein and off-flavor compounds was confirmed by the formation of large aggregates, decreased surface hydrophobicity, and a structural transformation from α-helix to β-sheet. Hydrogen bonds and hydrophobic interactions were identified as the primary interaction forces. Adding phenolic compounds significantly reduced soybean protein binding to flavor compounds. Phenolic compounds had a stronger binding affinity to soybean protein compared to flavor compounds and occupied binding sites on soybean protein, preventing flavor compound binding. L-epicatechin, (−)-epicatechin gallate, and epigallocatechin-3-gallate primarily occupied binding sites for 2-MBA, while ferulic acid, chlorogenic acid, and caffeic acid occupied sites for IVA, IBA, and 2-MBA. This research aids in controlling flavor release by soybean protein in food systems, supporting the development of nutrient-rich fermented foods.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.