This is a demo store. No orders will be fulfilled.

Controlled Hierarchical Construction of Ultrahomogeneous Co9S8@CoAl-LDH/NF Layered Core–Shell Heterostructures for High-Performance Asymmetric Supercapacitors

INORGANIC CHEMISTRY [2024]
Yue Yan, Wenrui Wu, Yang Yang, Tao Xu, Xianfu Li
ABSTRACT

The rational collocation and construction of multiphase composite electrode materials with ingenious structures is a key strategic to enhance the electrochemical performance of supercapacitors (SCs). Within this project, a unique Co9S8@CoAl-LDH/NF core–shell heterostructure consisting of CoAl-LDH/NF ultrathin nanosheets sturdily attached to Co9S8/NF needle-like nanorods is grown in situ on self-supported conductive substrate nickel foam (NF) by an effortless and productive multistep hydrothermal method. The construction of the core–shell structure can effectively enhance the capacitive properties as well as the mechanical strength of the material. Compared with the single-component materials Co9S8/NF (1769.6 mF cm–2 and 91.6%) and CoAl-LDH/NF (858 mF cm–2 and 85.2%), the Co9S8@CoAl-LDH/NF composites have excellent capacitance properties (5052.4 mF cm–2) along with exceptional capacitance retention (5000 cycles) 98.5% even after undergoing charging and discharging. Furthermore, the asymmetric SCs fabricated with Co9S8@CoAl-LDH/NF and AC/NF exhibit an energy density of 0.17 mWh cm–2 at 3.20 mW cm–2. Therefore, the innovative core–shell heterostructure of Co9S8@CoAl-LDH/NF presented in this study holds immense practical potential as a groundbreaking electrode material in the realm of SCs.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.