This is a demo store. No orders will be fulfilled.
Construction of BSA-ZnO&Quercetin based multifunctional bionic self-assembly system and their antibacterial mechanism study
The misuse of antibiotics has led to the growing problem of multidrug-resistant (MDR) bacteria, and there is still a lack of effective antibacterial agents that can replace antibiotics. Therefore, the design and development of multifunctional nanomaterials with long-term inhibitory effects on drug-resistant bacteria are extremely challenging. In this study, a multifunctional biomimetic self-assembly system, BSA-ZnO&Quercetin, based on bovine serum albumin (BSA), ZnO, and quercetin, was established using a simple and controllable method. The prepared self-assembly system has high stability and biocompatibility, and could fully combine the performance advantages of each component. BSA-ZnO&Quercetin showed excellent broad-spectrum antibacterial activity without inducing bacterial resistance. The related antibacterial mechanism of BSA-ZnO&Quercetin primarily involves biofilm inhibition and destruction, and inducing the production of reactive oxygen species, resulting in the death of the bacteria. The biomimetic self-assembly system BSA-ZnO&Quercetin constructed in this research is expected to replace antibiotics for antibacterial application.