This is a demo store. No orders will be fulfilled.
Construction of a microalgal-fungal spore co-culture system for the treatment of wastewater containing Zn(II) and estrone: Pollutant removal and microbial biochemical reactions
The co-culture system of Chlorella sorokiniana and Aspergillus oryzae has demonstrated exceptional tolerance and efficiency in the removal of pollutants from swine manure. This study evaluates the ability of the co-culture system to remove Zn(II) and estrone, while assessing the impact of these pollutants on the system's overall functionality. Results indicated that co-cultivation achieved higher biomass accumulation, peaking at 0.88 g/L after 96 h. Increasing estrone exposure concentration reduced photosynthetic activity and chlorophyll content, whereas Zn(II) exposure initially enhanced and later inhibited chlorophyll synthesis. Co-cultivation secreted extracellular polymeric substances, including protein-like and humus-like substances, to alleviate environmental stress and form algal-fungal community. After 96 h of cultivation, the removal efficiencies reached 86.44% for 1.5 mg/L Zn(II) and 84.55% for 20 mg/L estrone. The Quantitative Structure Activity Relationship model revealed a reduction in the ecotoxicity of estrone intermediate products to varying degrees. Metabolomics analysis showed that exposure to estrone and Zn(II) significantly boosted the production of Gibberellic acid, Indole-3-acetic acid, and Zeatin riboside in Chlorella sorokiniana , while reducing Abscisic Acid levels. Furthermore, the exposure led to an increase in various metabolites in the Tricarboxylic acid cycle of the co-cultivation system, influencing the synthesis and metabolism of key biochemical components like carbohydrates, lipids, and proteins. These findings elucidate the biochemical responses of Chlorella sorokiniana - Aspergillus oryzae co-culture system to pollutants and provide insights into its potential application in the treatment of wastewater containing endocrine disrupting chemicals and heavy metals.