This is a demo store. No orders will be fulfilled.

Construction and Electrochromic Properties of Two-Dimensional Covalent Organic Frameworks with Donor-Acceptor Structures of Triphenylamine and Bipyridine

JOURNAL OF THE ELECTROCHEMICAL SOCIETY [2024]
Shanxin Xiong, Juan Wu, Min Chen, Kerui Zhang, Ke Fang, Yukun Zhang, Xiaoqin Wang, Chunxia Hua, Jia Chu, Runlan Zhang, Chenxu Wang, Ming Gong, Hong Wang, Bohua Wu
ABSTRACT

The stacking between layers of a two-dimensional covalent organic framework (COF) leads to overlapping π orbitals, which enables charge carriers to be transported quickly through these pre-designed π orbitals. The two-dimensional COF featuring donor-acceptor interactions represents a straightforward approach for fabricating a high-performance organic electrochromic device. In this paper, N, N, N', N'-tetrad(4-aminophenyl)−1,4-phenylenediamine (TPDA) with electron-rich structure and 2,2'-bipyridine-5,5'-dialdehyde (BPDA) with strong electron absorption ability were used as the construction unit. COFTPDA-BPDA electrochromic materials with donor-acceptor structure were synthesized by Schiff base reaction, which can achieve reversible switching from red to dark gray. The color/fade time of the film at 474 nm wavelength is 6.8 s/11.9 s. The contrast retention rate of the film can reach 97.6% after 20 potential cycles, the memory time is as long as 4278 s. The present study demonstrates that constructing a donor-acceptor (D-A) structural unit with conjugated triphenylamine as the electron donor linked to bipyridine electron-withdrawing groups enhances charge transfer and redox reactions. With the success of this design strategy, the construction of the D-A structure is an important methodology for improving the electrochromic properties of materials.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.