This is a demo store. No orders will be fulfilled.

Constructing built-in electric fields in 2D/2D Schottky heterojunctions for efficient alkaline seawater electrolysis

Inorganic Chemistry Frontiers [2024]
Hongjun Chen, Liming Deng, Sheng Zhao, Shuyi Liu, Feng Hu, Linlin Li, Jianwei Ren, Shengjie Peng
ABSTRACT

Developing efficient and durable hydrogen evolution reaction (HER) electrocatalysts is critical for industrial and sustainable hydrogen production. Herein, a simple co-precipitation strategy is proposed to successfully construct catalysts with a Mott–Schottky heterojunction by coupling a transition-metal phosphate to the surface of stripped MXene thin-layer nanosheets (M3(PO4)2@MXene, M = Co, Ni, and Fe). The Co3(PO4)2@MXene with a unique tightly connected 2D/2D heterostructure and built-in electric field induces directional electron transfer at the interface, regulates the polarized structure of the active sites, and accelerates both mass and electron transport. Consequently, the optimized Co3(PO4)2@MXene demonstrates outstanding HER performance, achieving low overpotentials of 46 and 58.6 mV at 10 mA cm−2 in alkaline freshwater and seawater electrolytes, respectively. Moreover, the Co3(PO4)2@MXene heterojunction catalyst maintains stable operation at a high current density of 500 mA cm−2 for over 100 h in alkaline seawater electrolytes. More importantly, Co3(PO4)2@MXene can offer a low potential of 1.71 V at 500 mA cm−2 with stable operation for 50 h in a flow-type alkaline seawater electrolyser. This study provides a unique heterostructure in an electrocatalyst for an efficient HER and presents its potential application in seawater electrolysis.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.