This is a demo store. No orders will be fulfilled.

Confining CuNi alloy nanoparticles into mesoporous silicon carbide nanofibers for enhanced tandem catalytic functionality

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY [2025]
Beibei Gao, Yi Zhou, Yuan Fang, Richeng Jin, Yuchi Fan, Lianjun Wang, Wan Jiang, Pengpeng Qiu, Wei Luo
ABSTRACT

Mesoporous framework supported metal nanoparticle catalyst represents a promising material platform for creating multiple active sites that drive tandem reactions. In this study, we demonstrate a novel catalyst design that involves the encapsulation of CuNi alloy nanoparticles within mesoporous silicon carbide nanofibers (mSiC f ) to achieve efficient tandem conversion of furfural (FFA) into 2-(isopropoxymethyl)furan (IPF). The unique one-dimensional (1D) mesoporous structure of mSiC f , coupled with abundant oxygen-containing groups, offers a favorable surface microenvironment for the stabilization of bimetallic CuNi active sites. Through carefully optimizing metal to acid sites, we have developed a catalyst containing a total mass ratio of 20 % Cu and Ni, which exhibits a remarkable performance with complete FFA conversion and 92 % IPF selectivity in 4 h. In-depth mechanistic investigations have revealed that the superior activity of this catalyst is attributed to a tandem reaction mechanism. Initially, FFA is hydrogenated at the dual metal active sites to produce furfuryl alcohol (FOL) as an intermediate, which is subsequently etherified at the acid sites with suitable species and strengths on the mSiC f supports. Additionally, the robust 1D mSiC f framework effectively protects the metal sites from agglomeration, resulting in excellent reusability of the catalyst. This study underscores the potential of mesoporous silicon carbide-supported bimetallic active sites for achieving enhanced tandem catalytic functionality.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.