This is a demo store. No orders will be fulfilled.

Characterization of hydrogel beads constructed from gelatinized lotus rhizome starch and sodium alginate by calcium cross-linking

FOOD HYDROCOLLOIDS [2024]
Xin-Yu Jiang, Lin Li, Jia-Nan Yan, Li-Chao Zhang, Ce Wang, Bin Lai, Hai-Tao Wu
ABSTRACT

The purpose of this study was to construct calcium cross-linked gelatinized lotus rhizome starch (LRS)/sodium alginate (SA) hydrogel beads of adjustable quality and to reduce the digestibility of gelatinized starch. LRS was mixed with SA, gelatinized by heating and subsequently cross-linked with Ca 2+ to form hydrogel beads. The digestibility of the gelatinized LRS could be adjusted by changing the dose of SA in the hydrogel beads. When the LRS/SA ratio was 4/6, the rapidly digested starch (RDS) content in the beads was reduced by 26.9% compared with gelatinized LRS alone, whereas the slowly digested starch (SDS) and resistant starch (RS) contents increased by 12.3-fold and 2.3-fold, respectively. In addition, the water distribution in the Ca 2+ -crosslinked LRS/SA hydrogel bead samples also showed an SA dose dependence. With increasing SA concentration, the ability of the hydrogel beads to immobilize water increased. The diffusion of Ca 2+ into the interpenetrating polymer network that was prepared with gelatinized LRS and SA gradually resulted in gelation dominated by ion bonds, leading to the heterogeneous microstructure of the hydrogel beads, which also involved intermolecular hydrogen bond interactions. Overall, the present study suggested a strategy for developing novel LRS hydrogel bead systems for quality control and gelatinized starch digestibility downregulation by adjusting the SA dose, which provided insights for the innovation of personalized and convenient starchy products in the food industry.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.