This is a demo store. No orders will be fulfilled.

Biocompatible hydrophobic cross-linked cyclodextrin-based metal-organic framework as quercetin nanocarrier for enhancing stability and controlled release

FOOD CHEMISTRY [2024]
Runan Zhao, Tao Chen, Yanfei Li, Lihang Chen, Yu Xu, Xuesong Chi, Songfeng Yu, Wenjun Wang, Donghong Liu, Beiwei Zhu, Jiangning Hu
ABSTRACT

Cyclodextrin-based metal-organic framework (CD-MOF) has been widely used in various delivery systems due to its excellent edibility and high drug loading capacity. However, its typically bulky size and high brittleness in aqueous solutions pose significant challenges for practical applications. Here, we proposed an ultrasonic-assisted method for rapid synthesis of uniformly-sized nanoscale CD-MOF, followed by its hydrophobic modification through ester bond cross-linking (Nano-CMOF). Proper ultrasound treatment effectively reduced particle size to nanoscale (393.14 nm). Notably, carbonate ester cross-linking method significantly improved water stability without altering its cubic shape and high porosity (1.3 cm 3 /g), resulting in a retention rate exceeding 90% in various media. Furthermore, the loading of quercetin did not disrupt cubic structure and showcased remarkable storage stability. Nano-CMOF achieved controlled release of quercetin in both aqueous environments and digestion. Additionally, Nano-CMOF demonstrated exceptional antioxidant (free radical scavenging 82.27%) and biocompatibility, indicating its significant potential as novel nutritional delivery systems in food and biomedical fields.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.