This is a demo store. No orders will be fulfilled.
Atomic Insights into the Heterogeneous Crystallization of Manganese (Oxyhydr)oxides on Typical Iron (Oxyhydr)oxides: from Adsorption to Oxidation to Crystallization
Heterogeneous crystallization of manganese (oxyhydr)oxides (MnOx) on iron (oxyhydr)oxides (FeOx) is crucial for the biogeochemical cycling of Mn, yet atomic-level insights into this process are important but relatively limited. Herein, we revealed the distinct adsorption, oxidation, and crystallization mechanisms of Mn on hematite (Hem), ferrihydrite (Fhy), and goethite (Gth). Gth exhibited highest ability in Mn(II) removal and oxidation, followed by Hem and Fhy. Manganite and hausmannite were the main MnOx products with distinct proportions, and morphologies cross the systems. MnOx growth mechanisms involve surface-induced nucleation, crystallization by particle attachment (CPA), and self-catalyzed growth. On Fhy, self-catalyzed growth was dominant; for Gth, surface-induced nucleation was prevalent, supplemented by CPA; and Hem combined all three mechanisms. These distinct mechanisms led to nanoparticles primarily of hausmannite on Gth and nanowires of manganite and hausmannite on Hem and Fhy, with those on Hem displaying lower aspect ratios. Differences in MnOx structure and morphology were attributed to Mn(II)-FeOx complexation, FeOx electronic band structure, and crystal structure mismatch between MnOx and FeOx, which respectively influenced the direct and indirect electron transfer and heterogeneous nucleation efficiency. This work advances our understanding of MnOx crystallization on FeOx at the nanoscale, explaining the diverse morphology and structure of MnOx in different environments.