This is a demo store. No orders will be fulfilled.
Aqueous synthesis of bio-based multifunctional additives for polylactic acid with flame retardation, expedited degradation and crystallization
Bio-based flame retardants have attracted significant attention in the flame retardant modification of polylactic acid (PLA). In this work, a bio-based flame retardant AA is controllably synthesized by ion exchange of arginine (Ar) and amino-trimethylene phosphonic acid (ATMP). The optimal interfacial compatibility and nano-size dispersion endow it with robust flame retardant and reinforcement effects simultaneously. The PLA/3AA composite, with the addition of only 3 wt% AA, exhibits a LOI of 28.5 % and a UL-94 of V-0 rating. Additionally, the tensile strength of PLA/3AA composites is up to 71 MPa, which is 14.3 % higher than that of pure PLA. Meanwhile, AA possesses the function of accelerating the decomposition and promoting the crystallization of PLA. This study paves a promising approach for the development of highly efficient bio-based flame retardant and its engineering application in PLA materials.