This is a demo store. No orders will be fulfilled.

Anti-Cracking TEOS-Based Hybrid Materials as Reinforcement Agents for Paper Relics

MOLECULES [2024]
Mengruo Wu, Le Mu, Zhiyue Zhang, Xiangna Han, Hong Guo, Liuyang Han
ABSTRACT

Tetraethoxysilane (TEOS) is the most commonly used silicon-based reinforcement agent for conserving art relics due to its cost-effectiveness and commercial maturity. However, the resulting silica gel phase is prone to developing cracks as the gel shrinks during the sol–gel process, potentially causing severe damage to the objects being treated. In this study, dodecyltrimethoxysilane (DTMS) was introduced into TEOS to minimize this shrinkage by adding elastic long chains to weaken the capillary forces. The gel formed from the DTMS/TEOS hybrid material was transparent and crack-free, featuring a dense microstructure without mesopores or micropores. It exhibited excellent thermal stability, with a glass transition temperature of up to 109.64 °C. Evaluation experiments were conducted on artificially aged, handmade bamboo paper. The TEOS-based hybrid material effectively combined with the paper fibers through the sol–gel process, polymerizing into a network structure that enveloped the paper surface or penetrated between the fibers. The surface of the treated paper displayed excellent hydrophobic properties, with no significant changes in appearance, color, or air permeability. The mechanical properties of the treated bamboo paper improved significantly, with longitudinal and transverse tensile strengths increasing by up to 36.63% and 44.25%, respectively. These research findings demonstrate the promising potential for the application of DTMS/TEOS hybrid materials in reinforcing paper relics.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.