This is a demo store. No orders will be fulfilled.

An Enhanced Ratiometric Fluorescence Immunosensor for Rapid Detection of AFB1 Based on the Dual-Enzyme Synergistic Co-Catalytic Effect of Natural Enzymes and Nanozymes

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY [2025]
Yinnan Jing, Jiamin Wang, Xuan Liu, Shurong Li, Qinkai Yang, Mengnan Wang, Xueyi Fan, Guangsheng Ge, Kai Zheng, Jianlong Wang, Xiaoqian Tang, Qi Zhang, Yanru Wang
ABSTRACT

Aflatoxin B1 (AFB1) is considered a critical analyte in food safety testing due to its widespread contamination and high toxicity. In this study, a ratiometric fluorescent immunosensor with synergistic catalysis by natural enzymes and nanozymes (N-N-RF-immunosensor) was constructed for the rapid detection of AFB1. Copper oxide and zeolitic imidazolate framework composite nanomaterials (CuO/ZIF-8 NCM) with peroxidase and oxidase activities were prepared. A ratiometric fluorescence signal was generated through the synergistic cocatalytic effect of the CuO/ZIF-8 NCM and alkaline phosphatase, in response to the competition interaction between the anti-idiotypic nanobody-alkaline phosphatase fusion protein (Nb2-5-AP) and AFB1. The assay could detect aflatoxins within 140 min, exhibiting a half maximal inhibitory concentration (IC50) of 0.032 ng/mL, a limit of detection (LOD) of 2.4 pg/mL, and a linear range of 0.0024–1.043 ng/mL. Compared with the traditional enzyme-linked immunosorbent assay (ELISA), the sensitivity was enhanced 25-fold, while the detection parameter was shortened by 1/3. Furthermore, the immunosensor was successfully applied in the actual samples, with recoveries ranging from 81 to 127%. The N-N-RF-immunosensor shows great potential for rapid and sensitive detection of aflatoxins.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.