This is a demo store. No orders will be fulfilled.

Advanced Polymeric Binders in Aqueous Zinc Ion Batteries: Dynamic Diselenide Bonds as Unique Cofactors for Improving Redox Kinetics

ACS Sustainable Chemistry & Engineering [2025]
Xiaoyan Feng, Xuewu Gao, Xiaoyu Zhou, Mengke Li, Haifeng Ji, Yingchun Liu, Kai Liu, Dashan Qin, Yi Feng, Xiaojie Zhang
ABSTRACT

Aqueous zinc ion batteries (AZIBs) show significant advantages in the field of current energy storage. This work has focused on the binder, which is one of the components of the cathode, which enhances the electrochemical behavior of sustainable high-capacity batteries. The polyurea-containing diselenide or disulfide units have been synthesized as a binder for AZIBs, which are named PICSe and PICS. Compared with PVDF, the critical contents of polyurea binders are diselenide/disulfide units, which act as cofactors to coordinate with cation charge carriers, facilitate Zn2+ transfer, and improve redox kinetics. Furthermore, the binders achieve physical cross-linking through free-radical-mediated mechanisms and hydrogen bonding interactions, which result in high mechanical properties of the cathodes. Therefore, the resultant AZIBs based on a PICSe binder show that the discharge specific capacity can be stabilized at about 100 mA h g–1 after 500 cycles at 1 C, and the capacity retention rate is 84.9%.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.