This is a demo store. No orders will be fulfilled.
A hydrogel-modified electrochemical biosensor for the rapid detection of ammonia‑nitrogen-resistant bacteria
Ammonia‑nitrogen wastewater is one of the main pollutants in the current environment. Rapid detection of microorganisms resistant to ammonia‑nitrogen provides a basis for bioremediation of ammonia‑nitrogen contaminated sites. This study uses electrochemical analysis for efficiently detecting of ammonia-resistant bacteria, utilizing a commercially available, low-cost screen-printed electrode (SPE) modified with agarose-based hydrogel (gel) or graphene oxide (GO). At the same time, the study employed electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) to monitor bacterial growth, revealing Escherichia coli ( E. coli ) inhibition upon ammonia‑nitrogen addition, while Raoultella terrigena (RN1) and Pseudomonas (RN2) exhibit tolerance. The method provides sensitivity results in <45 min, which is significantly faster than traditional methods. RN1 and RN2 exhibit promising ammonia‑nitrogen removal rates, reaching up to 81 % and 92 %, respectively. This study aimed to develop an effective electrochemical method for rapidly detecting the sensitivity of microorganisms to ammonia‑nitrogen. The method offers advantages such as high speed, efficiency, and cost-effectiveness, potentially providing valuable microbial resources for mitigating ammonia nitrogen wastewater pollution.