This is a demo store. No orders will be fulfilled.

2D/0D Heterojunction Fluorescent Probe with Schottky Barrier Based on Ti3C2TX MXene Loaded Graphene Quantum Dots for Detection of H2S During Food Spoilage

ADVANCED FUNCTIONAL MATERIALS [2024]
Zhixin Jia, Jingbin Zhang, Zengtao Ji, Jiaran Zhang, Xinting Yang, Ce Shi, Xia Sun, Yemin Guo
ABSTRACT

Hydrogen sulfide (H 2 S) contamination of food has raised widespread public health concerns, leading to substantial medical and economic burdens. Herein, a 2D/0D heterojunction fluorescent probe (TCTG) with Schottky barriers (SB) is designed and synthesized, utilizing Ti 3 C 2 T x MXene-loaded graphene quantum dots (GQDs), for the detection of H 2 S during food spoilage. The microstructures observed through SEM and TEM reveal that uniformly sized GQDs are evenly attached to the surface of a monolayer Ti 3 C 2 T x . The chemisorption between GQDs and Ti 3 C 2 T x facilitates charge transfer and the formation of SB, resulting in intramolecular charge transfer (ICT) effects. With the introduction of H 2 S, TCTG (50%) exhibits the highest sensitivity, selectivity, and anti-interference properties, with ultra-fast fluorescence transient reaction (3s) and remarkably low detection limit of 41.82 ppb as well as noticeable color change. When TCTG (50%) reacted with H 2 S, the ICT effects are inhibited, leading to the recovery of photoinduced electron transfer (PET) and fluorescence quenching. Notably, probe TCTG is effectively utilized to detect changes in H 2 S levels in raw foods to assess their quality. Overall, the significance of this study is its potential to revolutionize food spoilage detection, offering a fast, reliable, and sensitive method to ensure food safety and reduce associated health and economic burdens.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.