This is a demo store. No orders will be fulfilled.

Hydrothermal carbons/ferrihydrite heterogeneous Fenton catalysts with low H2O2 consumption and the effect of graphitization degrees

CHEMOSPHERE [2022]
Yanping Zhu, Qingru Xie, Runliang Zhu, Ying Lv, Yunfei Xi, Jianxi Zhu, Jian Fan
ABSTRACT

As the heterogeneous Fenton reactions are always restricted by the unsatisfied reduction efficiency of Fe(III) and ineffective consumption of H 2 O 2 , many strategies have been developed. In this work, we prepared hydrothermal carbons (HTC) with different graphitization degrees using glucose under different hydrothermal times, and then they were combined with ferrihydrite (Fh). Interestingly, although 30%HTC/Fh has much better BPA degradation efficiency than Fh (26 times larger of calculated degradation rate constants), the decomposition rate of H 2 O 2 in the former system is lower. The generated Fe(II) of HTC/Fh is much higher than that of Fh during the heterogeneous Fenton reactions , and the degradation of BPA is almost unaffected by p -benzoquinone (scavenger of superoxide radicals (O 2 •− )) while greatly inhibited by isopropanol (scavenger of hydroxyl radicals (HO • )). These results indicate that HTC act as electron donors due to the abundant carbon-centered persistent free radicals (PFRs) to directly reduce Fe(III) to Fe(II) and therefore decrease the H 2 O 2 consumption by Fe(III), which subsequently inhibits the generation of less active O 2 •− and promote the utilization efficiency of H 2 O 2 . HTC with a low graphitization degree contain more PFRs for Fe(III) reducing, significantly enhancing the Fenton catalytic activity of Fh.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.