This is a demo store. No orders will be fulfilled.

Phosphate enhanced uranium stable immobilization on biochar supported nano zero valent iron

JOURNAL OF HAZARDOUS MATERIALS [2022]
Yang Ruan, Huimin Zhang, Zijing Yu, Zenghui Diao, Gang Song, Minhua Su, Li’an Hou, Diyun Chen, Shuao Wang, Lingjun Kong
ABSTRACT

Uranium (U) immobilization from wastewater by zero valent iron (ZVI) was widely concerned through reduction and surface adsorption. Releasing of U due to re-oxidation of U(IV) into U(VI) limited the application of ZVI in U decontamination . In this work, a kind of biochar supported nano zero valent iron (Fe/BC(900)) was obtained by carbothermal reduction of starch mixed with ferric nitrate at 900 °C. U immobilization behavior by Fe/BC(900) in the presence of phosphate (P) was investigated. The U immobilization reaction was adjusted by controlling the sequence of U, Fe/BC(900) and P. U immobilization efficiency was enhanced to 99.9% in the presence of P. Reaction sequence of U, Fe/BC(900) and P influenced the U immobilization efficiency, which followed the order of (U-P)+Fe/BC(900)>(U- Fe/BC(900))+P>U+Fe/BC(900)>(P-Fe/BC(900))+U. P and nZVI both contributed to enhancing U immobilization through precipitation of uranyl-P and reductive co-precipitate (U(IV)) in a wide pH range. The released Fe ions could precipitate with uranyl and phosphate. Consumption of P and nZVI in the (P-Fe/BC(900))+U system limited U immobilization ability. The precipitate is highly dependent on U, P and Fe elements. U desorption in (U-P)+Fe/BC(900) system was not observed with stability.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.