This is a demo store. No orders will be fulfilled.

Mechanism of peroxymonosulfate activation and the utilization efficiency using hollow (Co, Mn)3O4 nanoreactor as an efficient catalyst for degradation of organic pollutants

ENVIRONMENTAL RESEARCH [2022]
Prosper Kwame Klu, Muhammad Abdul Nasir Khan, Chaohai Wang, Junwen Qi, Xiuyun Sun, Jiansheng Li
ABSTRACT

Development of efficient catalysts for peroxymonosulfate (PMS) activation and further understanding its mechanism on organic pollutants degradation is of significant importance for advanced oxidation processes (AOPs). Herein, hollow (Co, Mn) 3 O 4 catalysts were synthesized by calcination of Co, Mn containing metal-organic frameworks (MOFs) and further used to evaluate the effectiveness of organic pollutants (Bisphenol A (BPA), atrazine (ATZ), and diethyl phthalate (DEP)) degradation by PMS activation. The PMS utilization efficiency in (Co, Mn) 3 O 4 /PMS system (36.4%) was estimated to be 28.0% and 43.8% higher than that of Co 3 O 4 /PMS and Mn 5 O 8 /PMS system, respectively. Notably, the metal leaching in (Co, Mn) 3 O 4 /PMS system was significantly suppressed. The utilization efficiency also reveals an inverse proportionality relationship with BPA mineralization but decreases with increasing initial pH value. A synergy between oxides of Co and Mn was perceived to enhance PMS utilization efficiency and BPA degradation. The results indicate enhanced catalytic performance with (Co, Mn) 3 O 4 compared to Co 3 O 4 derived from Co-MOF and other reported catalysts, with 99% of BPA degradation within 4 min. The oxidation mechanism was then proposed based on the electron paramagnetic resonance (EPR) and XPS results. Our findings might have contributed to designing heterogeneous catalysts for efficient PMS utilization in AOPs.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.