This is a demo store. No orders will be fulfilled.
Enhanced multimodal luminescence and ultrahigh stability Eu3+-doped CsPbBr3 glasses for X-ray detection and imaging
As an emerging scintillation material, metal halide perovskite (CsPbX3) has been deemed the most potentially valuable candidate in X-ray detection and medical imaging. Nevertheless, it is a continuing challenge to implement efficient radioluminescence (RL) with high radiation stability and moisture resistance. Moreover, the optimized luminescence properties and excellent uniformity of CsPbX3 glass are also key points for obtaining perfect X-ray images. Herein, we have successfully precipitated Eu3+-doped CsPbBr3 nanocrystals (NCs) with improved photoluminescence quantum yield (≈58.6%) because partial Eu3+ entered the perovskite lattice in a robust borosilicate glass matrix by in situ crystallization. The small amount of Eu addition made the lattice of NCs shrink and promoted uniform distribution of CsPbBr3 NCs in the glass, which effectively reduced the light scattering of the sample. Subsequently, multimodal RL intensity of the CsPbBr3/CsPbBr3:xEu NCs glasses (CPB-0Eu/CPB-xEu) as a function of X-ray dose rate showed a superlinear relationship to the benefit of obtaining satisfactory X-ray images. Also, the outstanding radiation stability and water resistance of CPB-xEu were confirmed due to the protection of the robust glass matrix. Finally, an X-ray imaging system using a CPB-xEu scintillator was constructed, and the spring in the opaque sample was legibly detected under the motivation of X-rays, indicating that CsPbX3 glasses possess extensive application prospects in terms of X-ray detection and medical imaging.