This is a demo store. No orders will be fulfilled.
Hydrophilic arginine-functionalized mesoporous polydopamine-graphene oxide composites for glycopeptides analysis
Considering the importance of glycopeptides in the clinical diagnosis of cancer and some serious diseases, the identification of glycopeptides from complex biological samples has attracted considerable attention. Effective pre-enrichment before mass spectrometry analysis plays an important role. In this work, a kind of hydrophilic two-dimensional composites (denoted as [email protected] @Arg) based on mesoporous polydopamine-graphene oxide were used to selectively enrich glycopeptides in biological samples. The mesoporous polydopamine (MPDA) layer self-assembled with template Pluronic F127 provided more binding sites to load arginine, and bound arginine enhanced the hydrophilicity of the material. As a result, [email protected] @Arg composites exhibited excellent enrichment performance for glycopeptides, containing good selectivity (IgG digests : BSA digests = 1:50, molar ratio), low detection limit for IgG digests (10 fmol μL −1 ), high loading capacity for IgG digests (200 μg mg −1 ), and good size exclusion (IgG digests : IgG : BSA = 1:100:100, mass ratio). In addition, mouse brain tissue was selected as the actual biological sample to further study the enrichment effect of [email protected] @Arg composites. In three parallel experiments, a total of 401 glycopeptides belonging to 233 glycoproteins were enriched from 200 μg digestion of mouse brain extract. The enrichment results demonstrate that [email protected] @Arg composites have application potential for glycopeptides enrichment in protein post-translational modification research.