This is a demo store. No orders will be fulfilled.
Structural insight into the alginate derived nano-La(OH)3/porous carbon composites for highly selective adsorption of phosphate
In this study, a novel nano-La(OH) 3 /porous carbon composites derived from La alginate xerogel with egg-box structure had been successfully synthesized by a gradient heat treatment in nitrogen atmosphere. This facile fabrication strategy can be easily employed to considerably encapsulate La(OH) 3 nanoparticles uniformly into the porous carbon matrix derived from the alginate macromolecule framework. The optimized sample, labeled as LS-550(N), exhibited extremely high phosphate uptake and great selectivity. The adsorption kinetic process dramatically followed pseudo-second-order model. The Langmuir model fitted maximum equilibrium adsorption capacity is 133.58 mg·g −1 . The phosphate adsorption mechanisms could be consist of electrostatic interaction, complexation and ligand exchange interaction on the surface of LS-550(N). The prominent practical applicability of LS-550(N) in the regeneration test suggests that the LS-550(N) could be a potential adsorption candidate for the decontamination of phosphate-containing natural water bodies.