This is a demo store. No orders will be fulfilled.

cRGD-modified core–shell mesoporous silica@BSA nanoparticles for drug delivery

POLYMER BULLETIN [2022]
Yu Lili, Yao Lin, Yang Kuan, Fei Wenling, Chen Qingqing, Qin Lan, Liu Shaojing, Cao Min, Liu Qian, Qin Bei
ABSTRACT

Nano core–shell drug carriers with high stability, low toxicity, and targeted drug delivery are significance for the delivery of anti-tumor drugs. In this study, Albumin from bovine serum (BSA), serving as a capping agent, was conjugated to MSNs via a cleavable disulfide bond to generate a redox-responsive nanocarrier (MSNs@BSA). Subsequently, cRGD peptide, as a targeting ligand, was modified on the particle surface by a protein cross-linker to obtain nanoparticles with tumor cell-targeting properties (RGD-MSNs@BSA). The construction of RGD-MSNs@BSA was confirmed by DLS analysis, scanning electron microscope (SEM), transmission electron microscopy (TEM), electron dispersive spectroscopy (EDS), X-Ray Diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FTIR), respectively. It was displayed that the model anticancer drug doxorubicin (DOX) was efficiently and stably encapsulated in RGD-MSNs@BSA in the absence of glutathione (GSH), and an outbreak of DOX was observed when the particles were exposed to a GSH-containing environment. It demonstrated that disulfide-linked BSA capping can increase the drug loading stability, while enduing it redox sensitivity. Flow cytometry and fluorescence microscope tests displayed that cellular uptake of RGD-MSNs@BSA was much higher than that of particles without cRGD and free DOX. These results indicated that RGD-MSNs@BSA can increase drug tumor-targeting and drug cellular uptake.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.