This is a demo store. No orders will be fulfilled.
Enhanced photodegradation of antibiotics based on anoxygenic photosynthetic bacteria and bacterial metabolites: A sustainably green strategy for the removal of high-risk organics from secondary effluent
Antibiotic residues in effluents discharged from wastewater treatment plants (WWTPs) have been considered high-risk organics due to biorefractory property and potential toxicity. Secondary pollution and unsustainability existed in advanced treatment of secondary effluent are currently in urgent need of improvement. In this study, a sustainably green strategy based on Rhodopseudomonas palustris ( R.palustris ) by regulating the structure of extracellular polymeric substances (EPS) was proposed for the first time to achieve efficiently removal of sulfadiazine (SDZ). Results showed that 0.2 V was the optimal external potential for R.palustris to efficiently remove SDZ, where the biodegradation rate constant obtained at this potential was 4.87-folds higher than that in open-circuit mode and a complete removal was achieved within 58 h in the presence of EPS extracted at this potential. Three-dimensional excitation-emission matrix (3D-EEM) spectra analysis suggested that tryptophan protein-like, tyrosine protein-like, humic acid-like and fulvic acid-like substances present in EPS were the main effective components which was responsible for the indirect photodegradation of SDZ. The quenching experiments showed that 3 EPS* was the dominant reactive species which accounted for 90% of SDZ removal. This study provides new implications for the advanced treatment of secondary effluent organic matters by developing eco-friendly bioaugmentation technology and biomaterials.