This is a demo store. No orders will be fulfilled.

Characterization of a new (Z)-3:(E)-2-hexenal isomerase from tea (Camellia sinensis) involved in the conversion of (Z)-3-hexenal to (E)-2-hexenal

FOOD CHEMISTRY [2022]
Cong Chen, Fei Yu, Xinli Wen, Shuna Chen, Kaixi Wang, Feiquan Wang, Jianming Zhang, Yuanyuan Wu, Puming He, Youying Tu, Bo Li
ABSTRACT

Two major green leaf volatiles (GLVs) in tea that contribute greatly to tea aroma, particularly the green odor, are (E)-2-hexenal and (Z)-3-hexenal. Until now, their formation and related mechanisms during tea manufacture have remained unclear. Our data showed that the contents of (E)-2-hexenal and (Z)-3-hexenal increased more than 1000-fold after live tea leaves were torn. Subsequently, a new (Z)-3:(E)-2-hexenal isomerase (CsHI) was identified in Camellia sinensis . CsHI irreversibly catalyzed the conversion of (Z)-3-hexenal to (E)-2-hexenal . Abiotic stresses including low temperature, dehydration, and mechanical wounding, did not influence the (E)-2-hexenal content in intact tea leaves during withering, but regulated the proportions of (Z)-3-hexenal and (E)-2-hexenal in torn leaves by modulating CsHI at the transcript level. For the first time, this work reveals the formation of (E)-2-hexenal during tea processing and suggests that CsHI may play a pivotal role in tea flavor development as well as in plant defense against abiotic stresses.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.