This is a demo store. No orders will be fulfilled.
Integration of ultrafine CuO nanoparticles with two-dimensional MOFs for enhanced electrochemical CO2 reduction to ethylene
To facilitate the electrochemical CO 2 reduction (ECR) to fuels and valuable chemicals, the development of active, low cost, and selective catalysts is crucial. We report a novel ECR catalyst consisting of CuO nanoparticles with sizes ranging from 1.4 to 3.3 nm anchored on Cu metal-organic framework (Cu-MOF) nanosheets obtained through a one-step facile solvothermal method. The nanocomposites provide multiple sites for efficient ambient ECR, delivering an average C 2 H 4 faradaic efficiency (FE) of ~50.0% at –1.1 V (referred to the reversible hydrogen electrode) in 0.1 mol/L aqueous KHCO 3 using a two-compartment cell, in stark contrast to a C 2 H 4 FE of 25.5% and 37.6% over individual CuO and Cu-MOF respectively, also surpassing most newly reported Cu-based materials under similar cathodic voltages. The C 2 H 4 FE remains at over 45.0% even after 10.0 h of successive polarization. Also, a ~7.0 mA cm −2 C 2 H 4 partial geometric current density and 27.7% half-cell C 2 H 4 power conversion efficiency are achieved. The good electrocatalytic performance can be attributed to the interface between CuO and Cu-MOF, with accessible metallic moieties and the unique two-dimensional structure of the Cu-MOF enhancing the adsorption and activation of CO 2 molecules. This finding offers a simple avenue to upgrading CO 2 to value-added hydrocarbons by rational design of MOF-based composites.