This is a demo store. No orders will be fulfilled.

An antibacterial ε-poly-L-lysine-derived bioink for 3D bioprinting applications

Journal of Materials Chemistry B [2022]
Yahui He, Zheng Zhou, Yuting Huang, Wenxiang Zhu, Ning He, Xiaolong Zhu, Xiaoxiao Han, Hairong Liu
ABSTRACT

The limited availability of bioinks has hindered the application of 3D bioprinting to tissue engineering, and bacterial infection is a serious threat to these applications. Aiming to solve this problem, a novel ε-poly-L-lysine (EPL)-derived antibacterial bioink has been developed for 3D bioprinting and tissue-engineering applications. Three glycidyl methacrylate (GMA)-modified EPL products, EPLGMA-1, EPLGMA-2, and EPLGMA-3, were prepared by reacting 3, 4, and 5 mL GMA with 5 g EPL, respectively. EPLGMA-1, EPLGMA-2, and EPLGMA-3 were photocurable and their corresponding photo-crosslinked hydrogels, EPLGMA-1H, EPLGMA-2H, and EPLGMA-3H, all exhibited very high antibacterial rates, good biocompatibility, good degradability, and promising mechanical properties. After EPLGMA-1H, EPLGMA-2H, and EPLGMA-3H with encapsulated chondrocytes were incubated for 4 weeks, EPLGMA-3H was the best one among them for tissue-engineering applications due to its most efficient tissue regeneration. Carrying chondrocytes, the EPLGMA-3 solution was printed into hydrogel products with high-fidelity shapes and high cell viability using a projection-based 3D bioprinter. Following the implantation of chondrocyte-loaded EPLGMA-3H samples into nude mice for 4 weeks, cartilage-like tissue was regenerated, suggesting that EPLGMA-3 is a promising antibacterial bioink for 3D bioprinting and tissue-engineering applications.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.