This is a demo store. No orders will be fulfilled.

Multimodal Imaging and Synergetic Chemodynamic/Photodynamic Therapy Achieved Using an NaGdF4,Yb,Er@ NaGdF4,Yb,Tm@NaYF4@Fe-MOFs Nanocomposite

Chemistry-An Asian Journal [2022]
Bo Ling, Yaguang Wang, Ruo Mi, Di Wang, Hongqi Chen, Xiaohu Li, Ye Zhang, Lun Wang
ABSTRACT

Graphical NaGdF 4 ,Yb,Er@NaGdF 4 ,Yb,Tm@NaYF 4 core@shell@shell three-layer structure of upconversion nanoparticles coated with Fe−TCPP metal-organic frameworks nanocomposite was designed and constructed for multimodal imaging and synergetic chemodynamic therapy/photodynamic therapy of tumors. Here, NaGdF 4 ,Yb,Er@NaGdF 4 ,Yb,Tm@NaYF 4 core@shell@shell three-layer structure of upconversion nanoparticles (UCNPs) coated with Fe−Tetrakis (4-carboxyphenyl) porphine (TCPP) metal-organic frameworks (Fe-MOFs) nanocomposite (UCNPs@MOFs) was designed and constructed for multimodal imaging and synergetic chemodynamic therapy (CDT)/photodynamic therapy (PDT) of tumors. The UCNPs@MOFs were successfully applied for tumor cells imaging in vitro and in vivo in near-infrared (NIR) region. The doped Gd was used as contrast agent for the magnetic resonance imaging (MRI) of mouse tumors. The luminescence in the UV-vis region was absorbed by the Fe-MOFs to produce singlet oxygen ( 1 O 2 ) for PDT. The Fe 3+ doped in the MOFs can catalyze H 2 O 2 to produce oxygen and hydroxyl radical (⋅OH). Hydroxyl radical is used in CDT and cooperates with the 1 O 2 of PDT. Based on the CDT/PDT synergistic effects, the UCNPs@MOFs nanocomposite had obviously enhanced tumor inhibitory efficiency in vivo. These results described that the asprared UCNPs@MOFs nanocomposite have great potential in the effective multimodal imaging and treatment of tumors.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.