This is a demo store. No orders will be fulfilled.

Spinel-Oxide-Based Laccase Mimics for the Identification and Differentiation of Phenolic Pollutants

ANALYTICAL CHEMISTRY [2022]
Quan Wang, Xiaoyu Wang, Hui Wei
ABSTRACT

Phenol and its derivatives, known as persistent organic pollutants, have long threatened human health and environmental safety. There is an urgent need to develop convenient, low-cost, and multiplex analytical methods. Since phenols are substrates of laccase, they can be detected via laccase-catalyzed colorimetric assays. Nevertheless, the laccase-based assays cannot distinguish different phenols. Moreover, natural laccases suffer from high cost and low stability issues. To meet these needs, here we developed a laccase-like nanozyme sensor array for phenol detection and differentiation, which takes advantage of both nanozymes and cross-reactive sensor arrays. First, we examined a series of spinel-type transition metal oxides and found that manganese on octahedral sites profoundly affects the laccase-like activity of the materials. Based on the developed manganese-based spinel oxides (i.e., Mn3O4, Zn0.4Li0.6Mn2O4, and LiMn2O4), a colorimetric sensor array was constructed. The sensor array could effectively identify and discriminate phenol and its derivatives and showed good performance in the identification and differentiation of phenols in tap water samples. This work provides an important guidance for the development of laccase-like nanozymes and a promising methodology for pollutant monitoring.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.