This is a demo store. No orders will be fulfilled.

Fabrication of Ultrathin Two-Dimensional/Two-Dimensional MoS2/ZnIn2S4 Hybrid Nanosheets for Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution

ACS Applied Energy Materials [2022]
Haomin Fang, Jiajia Cai, Haijin Li, Jianmin Wang, Yongtao Li, Wei Zhou, Keke Mao, Qinfeng Xu
ABSTRACT

Ultrathin (ut) two-dimensional (2D) ZnIn2S4 (ZIS) nanosheets have exhibited great potential in photocatalytic hydrogen evolution. Herein, ultrathin 2D/2D MoS2/ZnIn2S4 (ut-MoS2/ZIS) were designed and prepared via two steps of the in situ hydro/solvothermal method. Benefiting from the ultrathin structure and the large and intimate contact between ut-ZIS and MoS2, the charge transfer was increased and the recombination of photogenerated carriers was suppressed. It is also noteworthy that 4 wt % ut-MoS2/ZIS gave the highest hydrogen evolution rate of 221.71 μmol h–1under visible light irradiation (λ > 420 nm), and the apparent quantum yield was measured to be 11.8% at 420 nm. Meanwhile, ut-MoS2/ZIS showed high stability after 16 h of irradiation. PL, TRPL spectrum, and photoelectrochemical measurement demonstrated that MoS2 cocatalyst playeds a vitally important role in the separation of charge carriers and proton reduction reaction. This work is expected to inspire the design and development of highly efficient ultrathin photocatalysts.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.