This is a demo store. No orders will be fulfilled.

Electrochemical fabrication of polyaniline films deposited on graphene-loaded electrodes for •OH production and perfluorooctanoic acid degradation

CHEMICAL ENGINEERING JOURNAL [2022]
Fangke Yu, Yang Yang, Yanfang Zhang, Yuwei Pan, Ying Zhang
ABSTRACT

The present study describes the coating of modified graphite felt (GF) with graphene (GE) and polyaniline (PANI). GF was doped with nitrogen atoms by a series of modification and electrolytic deposition . Tests of different types of N content and cathodic catalytic oxidation performance confirmed that the graphite N introduction promoted the production of H 2 O 2 in the 2e - process. Pyridine N catalyzed the H 2 O 2 decomposition to produce •OH. The amount of H 2 O 2 produced by GF, GF-GE, and GF-GE@PANI system was 11 mg L -1 , 70 mg L -1 , and 180 mg L -1 , respectively. The doping of graphene increased H 2 O 2 yield, and the electrolytic deposition of PANI converted H 2 O 2 to •OH rapidly. It was proved that the N atom provided by graphene was graphite N, which was the active catalytic site for the production of H 2 O 2 . The perfluorooctanoic acid (PFOA) removal at 180 min was 24.1% and 49.8% in the GF and GF-GE systems, respectively. The GF-GE@PANI system achieved 100% PFOA removal within 160 min. It was demonstrated that the enrichment of PANI with pyridine N provided many active sites for improving the conversion of H 2 O 2 to •OH and in-situ degrading organic pollutants , offering an alternative for wastewater treatment .

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.