This is a demo store. No orders will be fulfilled.

A Trilayer Dressing with Self-Pumping and pH Monitoring Properties for Promoting Abdominal Wall Defect Repair

Nanomaterials [2022]
Jie Hu, Guopu Chen, Gefei Wang
ABSTRACT

Due to abdominal infection, excessive wound exudation, and intestinal fistula formation, the treatment of full-thickness abdominal wall defects has become a difficult challenge for clinic doctors. This clinical problem cannot be resolved with existing biomaterials. To facilitate the repair of the abdominal wall, we developed a novel wound dressing with directional biofluid transport. We used electrospinning to spin a trilayer dressing consisting of hydrolyzed poly-acrylonitrile (HPAN)/Curcumin (CUR), polyurethane (PU), and polycaprolactone (PCL). In vitro results show that the three-layer wound dressing is biocompatible, capable of directional transport of excessive wound exudation, preventing reverse penetration, and monitoring the pH of the wound. Furthermore, in vivo results show the trilayer wound dressing improves the wound microenvironment, reduces inflammatory factors, promotes angiogenesis, and accelerates abdominal wall repair. Thus, we believe that the novel trilayer electrospinning dressing could facilitate abdominal wall defect repair.Keywords:electrospinning;membrane;abdominal wall defect;pH monitoring;directional biofluid transport;wound healing

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.