This is a demo store. No orders will be fulfilled.

Perfluorooctanoic acid and perfluorooctane sulfonic acid inhibit plant growth through the modulation of phytohormone signalling pathways: Evidence from molecular and genetic analysis in Arabidopsis

SCIENCE OF THE TOTAL ENVIRONMENT [2022]
Ping Zhang, Liangliang Sun, Fei Liu, Qingqing Gao, Ruting Wang, Qiong Ju, Jin Xu
ABSTRACT

Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are the most representative perfluoroalkyl substances that accumulate in the food chain and are harmful to the environment. The uptake, translocation and physiological effects of PFOA and PFOS in plants have been reported in recent years; however, the regulatory mechanisms underlying PFOA- and PFOS-mediated plant growth and development remain largely unclear. Here, using Arabidopsis thaliana as the study material, we showed that both PFOA and PFOS inhibited plant growth; PFOS showed a stronger inhibitory effect on primary root (PR) growth, whereas PFOA exerted a stronger inhibitory effect on photosynthesis. Transcriptome analysis revealed that PFOA- and PFOS-modulated plant growth and development were correlated with the phytohormones auxin and abscisic acid (ABA). Further genetic analyses using mutants related to auxin biosynthesis, receptors and transport and mutants related to ABA biosynthesis and signalling transduction revealed that both PFOA and PFOS inhibited PR growth by modulating auxin biosynthesis and signalling pathways, and the ABA signalling pathway was also involved in PFOS-mediated PR growth inhibition. Collectively, these results shed new light on the molecular mechanisms of PFOA- and PFOS-mediated root system growth and their effects on phytohormone signalling pathways in plants.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.