This is a demo store. No orders will be fulfilled.

2D Bismuth@N-Doped Carbon Sheets for Ultrahigh Rate and Stable Potassium Storage

Small [2022]
Anding Xu, Qi Zhu, Guilan Li, Caihong Gong, Xue Li, Huaming Chen, Jie Cui, Songping Wu, Zhiguang Xu, Yurong Yan
ABSTRACT

Metallic Bi, as an alloying-type anode material, has demonstrated tremendous potential for practical application of potassium-ion batteries. However, the giant volume expansion, severe structure pulverization, and sluggish dynamics of Bi-based materials result in unsatisfied rate performance and unstable cycling stability. Here, 2D bismuth@N-doped carbon sheets with Bi  O  C bond and internal void space (2D Bi@NOC) are successfully fabricated via a self-template strategy to address these issues, which own ultrafast electrochemical kinetics and impressive long-term cycling stability for delivering an admirable capacity of 341.7 mAh g −1 after 1000 cycles at 10 A g −1 and impressive rate capability of 220.6 mAh g −1 at 50 A g −1 . Particularly, the in situ transmission electron microscopy observations visualize the real-time alloying/dealloying process and reveal that plastic carbon shell and void space can availably relieve dramatic volume stress and powerfully maintain structural integrity. Density functional theory calculation and ultraviolet photoelectron spectroscopy test certify that the robust Bi  O  C bond is thermodynamically and kinetically beneficial for adsorption/diffusion of K + . This work will light on designing advanced high-performance energy materials and provide important evidence for understanding the energy storage mechanism of alloy-based materials.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.