This is a demo store. No orders will be fulfilled.

Exploring the Antibacterial and Biosensing Applications of Peroxidase-Mimetic Ni0.1Cu0.9S Nanoflower

Biosensors-Basel [2022]
Li Liu, Yayu Lai, Jinming Cao, Yu Peng, Tian Tian, Wensheng Fu
ABSTRACT

Nanozymes, as artificial enzymes with the biological action of natural enzymes, have enormous potential in the fields of disease diagnosis, bacteriostasis, biosensing, etc. In this work, the Ni0.1Cu0.9S nanoflower was successfully synthesized through a one-step hydrothermal method. A combined strategy of Ni doping and morphology design was employed to adjust its electronic structure and active sites, endowing the Ni0.1Cu0.9S nanoflower with excellent peroxidase-like activity. Therefore, it can catalyze the decomposition of H2O2to generate •OH with higher antibacterial activity, establishing a broad-spectrum antibacterial system based on the Ni0.1Cu0.9S nanoflower againstE. coliandS. aureus, which avoids the harm of a high concentration of H2O2. Additionally, the colorless substrate TMB can be catalytically oxidized into blue ox-TMB via •OH. As a result, a colorimetric technique with rapid and accurate detection of ascorbic acid (AA) by the unaided eye was designed, in view of the specific inhibition effect towards the oxidation of TMB. This detection platform has a wide linear range (10~800 μM) with a low limit of detection (0.84 μM) and exhibits a satisfactory selectivity toward the detection of AA. This study sheds new light on the application of copper-containing nanozymes in the fields of biomedicine and bioassay.Keywords:peroxidase mimicase;reactive oxygen species;antibacterial application;biosensing;copper-containing nanozymes

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.