This is a demo store. No orders will be fulfilled.

Purification performance of modified polyacrylonitrile fiber–activated carbon fiber filter for heavy metal ions

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH [2023]
Ji Yuanhuo, Wang Xiwen
ABSTRACT

A heavy metal ion adsorbent (HFPANF) with high surface area was obtained from polyacrylonitrile fibers with fibrillation and alkali hydrolysis, and an activated carbon fiber filter was prepared by using HFPANF as the binder. The surface area of polyacrylonitrile was 48.64 m 2 /g due to fibrillation, which also led to the carboxyl content of the HFPANF up to 3.4 mmol/g. Batch adsorption experiments on Cu 2+ and Pb 2+ showed that the adsorption capacities of HFPANF for Cu 2+ and Pb 2+ were 47.5 mg/g and 54.3 mg/g. The adsorption kinetics showed that the adsorption reached equilibrium at 90 min and that the adsorption followed the pseudo-second order model. It indicates that the adsorption process is chemisorption. HFPANF formed a single tooth chelate with Cu and a double tooth chelate with Pb. HFPANF-ACF filter was prepared by wet molding technique. When the HFPANF content was 30%, the filter reached a compressive strength of 15.37 MPa and its maximum flux was 180 L/h. 2.5 mg/L of Cu and Pb were used for dynamic adsorption experiments and the heavy metal removal rate was still above 95% after filtering 600 L. The pressure drop of HFPANF-ACF filter was much smaller compared with that of GAC filter due to the combined effect of fibrillated nanofibers and ACF, which can improve the filtration efficiency of the filter. Graphical Abstract

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.