This is a demo store. No orders will be fulfilled.

A pHe sensitive nanodrug for collaborative penetration and inhibition of metastatic tumors

JOURNAL OF CONTROLLED RELEASE [2022]
Meirong Huo, Jiyuan Zhou, Honglan Wang, Yuzhao Zheng, Yuqing Tong, Jianping Zhou, Jiyong Liu, Tingjie Yin
ABSTRACT

Current chemotherapies for metastatic tumors are seriously restricted by limited drug infiltration and deficient disturbance of metastasis-associated complex pathways involving tumor cell autocrine as well as paracrine loops in the microenvironment (TME). Of note, cancer-associated fibroblasts (CAFs) play a predominant role in shaping TME favoring drug resistance and metastasis. Herein, we constructed a tumor extracellular pH (pH e ) sensitive methotrexate-chitosan conjugate (MTX-GC-DEAP) and co-assembled it with quercetin (QUE) to achieve co-delivered nanodrugs (MTX-GC-DEAP/QUE). The pH e sensitive protonation and disassembly enabled MTX-GC-DEAP/QUE for stroma-specific delivery of QUE and positive-charged MTX-GC-DEAP molecular conjugates, thereby achieving deep tumor penetration via the combination of QUE-mediated CAF inactivation and adsorption-mediated transcytosis . On the basis of significantly promoted drug availability, a strengthened “omnidirectional” inhibition of pre-metastatic initiation was generated both in vitro and in vivo from the CAF inactivation-mediated reversion of metastasis-promoting environments as well as the inhibition of epithelial-mesenchymal transition, local and blood vessel invasion via QUE-mediated direct regulation on tumor cells. Our tailor-designed versatile nanodrug provides a deep insight into potentiating multi-faceted penetration of multi-mechanism-based regulating agents for intensive metastasis inhibition .

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.