This is a demo store. No orders will be fulfilled.
Combined exposure to di(2-ethylhexyl) phthalate and polystyrene microplastics induced renal autophagy through the ROS/AMPK/ULK1 pathway
Di(2-ethylhexyl) phthalate (DEHP) and polystyrene microplastics (PS-MPs) are new environmental pollutants that attracted increased attention. At present, the effects and underlying mechanisms of action of combined exposure of DEHP and PS-MPs on the kidney have not been elucidated. To investigate the renal toxicity of DEHP and PS-MPs exposure, we established single and combined DEHP and PS-MPs exposure models in mice and HEK293 cells, respectively. Hematoxylin and eosin staining, transmission electron microscopy , monodansylcadaverine staining, immunofluorescence, real-time quantitative PCR, Western blot analysis and other methods were used to detect relevant indicators. The results showed that the expression levels of ROS/AMPK/ULK1 and Ppargc1α/Mfn2 signaling pathway-related genes were significantly increased in the DEHP and PS-MPs exposure models. The mRNA and protein expression levels of autophagy markers were also upregulated. In addition, we found that the expression levels of mRNAs and proteins in the combined exposure group were more significantly increased than those in the single exposure group. In conclusion, combined exposure to DEHP and PS-MPs caused oxidative stress and activated the AMPK/ULK1 pathway, thereby inducing renal autophagy. Our results enhance the field of nephrotoxicity studies of plasticizers and microplastics and provide new light on combined toxicity studies of DEHP and PS-MPs.