This is a demo store. No orders will be fulfilled.

Analyte-triggered in situ “off–on” of Tyndall effect for smartphone-based quantitative nanosensing of Ag+ ions

PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES [2023]
Hu Miao, Xiao Wencheng, Chen Yijing, He Qing, Yuan Kaijing, Huang Xueer, Jin Wenying, Nie Jinfang, Zhang Yun
ABSTRACT

This work describes two new colorimetric methods for smartphone-based point-of-care nanosensing of toxic Ag + ions. They were based on the analyte-triggered in situ “off–on” of Tyndall effect (TE) of non-plasmonic colloid or plasmonic metal nanoprobes. The first TE-inspired assay (TEA) focused on the initial analytical application of precipitation reactions where a non-plasmonic AgCl colloid could be formed once mixing the analyte with a NaCl solution. Such AgCl colloid displayed strong visual TE signals after their irradiation by a laser pointer pen, which unexpectedly achieved a detection limit of ~ 400 nM. The second TEA was further designed to reduce the limit down to ~ 78 nM using the analyte’s oxidizability towards 3,3′,5,5′-tetramethylbenzidine molecules. The redox reaction could create positively charged products that could make negatively charged plasmonic gold nanoparticles aggregate through electrostatic interactions to remarkably amplify their TE responses. Both limits were lower than the minimum allowable Ag + level (~ 460 nM) in drinking water issued by the World Health Organization. The satisfactory recovery results for detecting Ag + ions in river, pond, tap, and drinking water additionally demonstrated good selectivity, accuracy and practicality of the proposed methods for potential point-of-need uses in environmental analysis, public health, water safety, etc. Graphical abstract

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.