This is a demo store. No orders will be fulfilled.
Carbon quantum dots modified small molecular quinone salt as cathode materials for sodium-ion batteries
Organic compounds are considered auspicious due to their widespread presence in nature, low cost, and sustainability. However, the inherent drawbacks of these organics’ compounds, like low-conductivity and high-solubility, restrict their large-scale application. To solve these problems, we innovatively combined carbon quantum dots (CDs) with active substances (tetrahydroxybenzoquinone ortho -disodium salt ( o -Na 2 THBQ)) at different mass ratios. The optimized o -Na 2 THBQ/CDs-2 (the mass ratio of o -Na 2 THBQ to CDs is 10:2) exhibited excellent electrochemical performance, the first-cycle discharge specific capacity was 410 mAh g −1 and maintained 182 mAh g −1 after 500 cycles, and the Coulombic efficiency was nearly 100 %. After 1300 cycles, the o -Na 2 THBQ/CDs-2 composite demonstrated a high specific capacity of 63 mAh g −1 at 500 mA g −1 . This work provides a reference to design an optimal composite ratio of carbon dots (CDs) and organics to fabricate cathode materials for high-performance sodium-ion batteries.