This is a demo store. No orders will be fulfilled.

Catalytic ozonation of phenol by magnetic Mn0.7Ce0.3Ox/CNT@Fe3C

Materials Research Express [2022]
Jing Wang, Li Ma, Zhengwei Pan, Tingyun Li
ABSTRACT

A high-efficient and stable catalyst is highly desired to catalyze ozone for refractory organic pollutants removal. In this work, Mn-Ce bimetallic oxide loaded CNT@Fe3C (Mn0.7Ce0.3Ox/CNT@Fe3C) was synthesized with Mn0.7Ce0.3Ox as the active component and magnetic CNT@Fe3C as the support. The catalytic performance of Mn0.7Ce0.3Ox/CNT@Fe3C towards catalytic ozonation was evaluated. The TOC removal efficiency of phenol degradation after 45 min of reaction was 98%, which was 1.5 times and 1.8 times that of monometallic CeO2/CNT@Fe3C (65%) and MnxOy/CNT@Fe3C (54%), respectively. The synthesized-Mn0.7Ce0.3Ox/CNT@Fe3C possessed good reusability during five successive cycles and remained efficient over a wide range of pH 4.2–8.3. The results of EPR measurements and quenching experiments demonstrated that hydroxyl radicals (·OH) were the dominant reactive oxidation species (ROS) for phenol mineralization in the Mn0.7Ce0.3Ox/CNT@Fe3C/O3 system. Moreover, the magnetic Mn0.7Ce0.3Ox/CNT@Fe3C is easily recovered and reused.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.