This is a demo store. No orders will be fulfilled.

Innate immune receptors co-recognition of polysaccharides initiates multi-pathway synergistic immune response

CARBOHYDRATE POLYMERS [2023]
Mingzhi Li, Xiaojun Huang, Jiajia Wen, Shikang Chen, Xincheng Wu, Wanning Ma, Steve W. Cui, Mingyong Xie, Shaoping Nie
ABSTRACT

The law and mechanism of the interaction between polysaccharides and pattern recognition receptors (PRRs) has been unclear. Herein, three glucomannans with different structures were selected to explore the universal mechanism for PRRs to recognize glucomannans. Screening results showed that the silence of TLR4 but not TLR2 severely blocked the production of inflammatory cytokines and the transduction of signal pathways. In-depth results revealed that the participation of myeloid differentiation protein 2 (MD2) and CD14 and the dimerization of the TLR4-MD2 complex were required for glucomannan-activated TLR4 signal transduction . Mannose receptor (MR) was also engaged in glucomannan-induced respiratory burst, endocytosis , and inflammatory signaling pathways in a spleen tyrosine kinase-dependent manner. The internalization of glucomannans into the cytoplasm by MR directly initiated complex intracellular signaling cascades. Finally, molecular docking characterized the binding energy and binding sites between glucomannans and multiple receptors from other perspectives. The essence of glucomannans recognized by PRRs was the non-covalent interaction of multiple receptors and the subsequent transmission of the signal cascade was triggered in a multi-channel and cooperative manner. As a result, the hypothesis that “Innate immune receptors co-recognition of polysaccharides initiates multi-pathway synergistic immune response” was proposed to outline these meaningful phenomena.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.