This is a demo store. No orders will be fulfilled.

Sb-doped FeOCl nanozyme-based biosensor for highly sensitive colorimetric detection of glutathione

ANALYTICAL AND BIOANALYTICAL CHEMISTRY [2023]
Chen Jiaqi, Wu Hongjiao, Liu Jun, Su Yiqian, Li Huiqin, Lin Pengcheng, Chen Ying, Xiao Wei, Cao Donglin
ABSTRACT

Nanozymes have been emerging as substitutes for natural enzymes to construct biosensors towards biomolecular detection. However, the detection of glutathione (GSH) by nanozyme-based biosensors still remains a great challenge for research on catalytic activity enhancement and the detection mechanism. In this work, Sb-doped iron oxychloride (Sb-FeOCl) with a well-defined nanorod-like structure is prepared by high-temperature calcination. Sb-FeOCl nanorods have high peroxidase-like activity, which can catalyze the decomposition of H 2 O 2 into ·OH and then oxidize 3,3′,5,5′-tetramethylbenzidine (TMB). In view of these intriguing observations, a reliable colorimetric method with a simple mixing and detection strategy is developed for the detection of GSH. The linear range of GSH detection is 1–36 μM. The detection limit of GSH reaches a low level of 0.495 μM (3σ/slope). The GSH sensing system also exhibits excellent specificity and anti-interference. Taking advantage of the advantages of the Sb-FeOCl nanorod-based biosensor, it can be used to quantitatively detect GSH levels in human serum. It can be anticipated that the Sb-FeOCl nanorods have broad prospects in the field of enzymatic biochemical reactions. Graphical Abstract

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.