This is a demo store. No orders will be fulfilled.

Sustainable cellulose-based multifunctional material for electromagnetic shielding, flame retardancy and antibacterial

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES [2023]
Junqing Chen, Zhaodong Zhu, Hui Zhang, Shiyu Fu
ABSTRACT

Biomass-based multifunctional electromagnetic shielding materials have attracted extensive interest in academia and industry due to the sustainability of biomass and the environmental adaptability of multifunctional materials. After removing lignin and hemicellulose wood become a porous substrate with aligned cellulose , which is a good platform for building cellulose-based materials. In this work, a cellulose composite with sandwich-like structure was constructed by in-situ polymerization of aniline on delignified wood and coating a PDMS/CNT layer. Benefiting from the natural porous hierarchical structure and the constructed multilayer continuous conductive network, the PDMS/CNT/PANI WA exhibits excellent electrical conductivity (18.6 S/m) and electromagnetic shielding performance (shielding efficiency value of 26 dB at the X band (8.2–12.4 GHz)). The synergistic effect of PANI and CNT endowed the material with excellent flame retardancy (HRR, THR and HRC decreased by 84 %, 53.4 % and 83.3 %) and significant antibacterial activity . Moreover, PDMS imparts a water contact angle of 105° to the material, which acts as a protective layer, further improves the durability of the material. This work provides a new strategy for developing sustainable and multifunctional electromagnetic shielding materials.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.