This is a demo store. No orders will be fulfilled.
Carboxyl induced ultrahigh defects and boron/nitrogen active centers in cobalt-embedded hierarchically porous carbon nanofibers: The stable oxygen reduction reaction catalysis in acid
Transition metal-nitrogen-carbon (M N C) type catalysts have been considered a promising alternative to noble metals for oxygen reduction reaction (ORR) electrocatalysis. Nevertheless, poor stabilities of M N C catalysts in acidic solutions limit their commercialization. In this study, we design and synthesize novel three-dimensional (3D) cobalt (Co) nanoparticles encapsulated in ultrahigh content of boron (B) and nitrogen (N) -doped hierarchically porous carbon nanofibers (denoted as Co@BN-PCNFs) by carbonizing the 3D acetic acid/cobalt nitrate/4-hydroxybenzeneboronic acid/polyvinylpyrrolidone precursor networks woven using electrospinning method under a nitrogen atmosphere. The optimal Co@BN-PCNFs-900 catalyst has abundant micro/mesopores and numerous topological defects and exhibits the largest surface area. Under the synergistic effect of oxygen-containing acetic acid molecules and the electrospinning technology, 5.87 at.% of B and 5.91 at.% of N atoms were doped into carbon nanofibers. Specifically, B/N electrocatalytic active centers (including BC 3 , pyridinic-N/Co N C, pyrrolic-N, and graphitic-N) of approximately 8.70 at.% were successfully introduced into the skeletons of Co@BN-PCNFs-900. In 0.1 M KOH, the ORR onset potential ( E onset ) and half-wave potential ( E 1/2 ) of Co@BN-PCNFs-900 were ∼ 64 and ∼ 63 mV, respectively, more positive than those of 20 wt% Pt/C. Additionally, in 0.5 M H 2 SO 4 , the ORR E onset and E 1/2 values of Co@BN-PCNFs-900 were only ∼ 11 and ∼ 7 mV, respectively, more negative than those of 20 wt% Pt/C. As the 3D hierarchically porous architectures, topological carbon edges, BC 3 , and partial N C/Co N C are relatively stable, the Co@BN-PCNFs-900 exhibits excellent stability toward ORR catalysis in both acidic and basic media. These favorable properties of Co@BN-PCNFs-900 nanofibers make them the best non-noble metal-based carbonaceous electrocatalysts for ORR in acidic electrolytes.