This is a demo store. No orders will be fulfilled.

A self-assembly nano-prodrug for triple-negative breast cancer combined treatment by ferroptosis therapy and chemotherapy

Acta Biomaterialia [2023]
Yuan Chen, Zhuo Yao, Peilian Liu, Qida Hu, Yong Huang, Li Ping, Fu Zhang, Honglin Tang, Tao Wan, Yuan Ping, Bowen Li
ABSTRACT

Chemotherapeutics have been recommended as the standard protocol for inoperable patients with triple-negative breast cancer (TNBC) at advanced stage, yet limited success has been achieved in prolonging survival rates by this monotherapy. A major reason for this failure is the chemo-resistance from traditional apoptotic pathways resulting in poor therapeutic effect. Ferroptosis has become a powerful modality of no-apoptotic cell death, which can effectively evade chemo-resistance in apoptotic pathways. Herein, we propose an active-targeting small-molecular self-assembly nano-prodrug for co-delivery of chemotherapeutics (CPT), Ferrocene (Fc) and GPX4 inhibitor (RSL3) to overcome the chemo-resistance from traditional apoptotic pathways. In this nano-prodrug, the disulfide linkage not only serves as a GSH-responsive trigger, but also exhibits a stable self-assembly behavior that forms nanoparticle . Interestingly, the RSL3 can be loaded during this self-assembly process that forms a three-components nano-prodrug. In tumor environment, the high GSH level can disassemble the nano-prodrug to trigger the release of the parent drug, which can improve the therapeutic effect by synergistic effects of ferroptosis and apoptosis. In different TNBC mice models, the nano-prodrug is encapsulated into RGD-modified phospholipid micelles (DSPE-PEG2000-RGD) and exhibits high anti-tumor and anti-metastasis efficacy, especially in orthotopic models. The application of ferroptosis to assist the enhancement of chemotherapeutics may serve as a promising strategy for TNBC treatment. Statement of significance Chemotherapeutics have been recommended as the standard of care for palliative and adjuvant treatment in patients with triple-negative breast cancer (TNBC), yet limited success has been achieved in prolonging the overall survival of patients by this monotherapy. A major reason for this failure is the chemo-resistance from traditional apoptotic pathways resulting in poor therapeutic effect. Thus, the co-delivery of the apoptosis and ferroptosis drug may overcome or evade the resistance in chemotherapy-induced apoptotic pathways and provide a promising strategy to combat TNBC. In this work, we developed a small-molecular self-assembly nano-prodrug for co-delivery of chemotherapeutics (CPT), Ferrocene (Fc) and ferroptosis resistance inhibitor (RSL3), which could overcome the chemo-resistance and improve the therapeutic effect by synergistic effects of ferroptosis and apoptosis.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.