This is a demo store. No orders will be fulfilled.
Recovery of rare earth elements from mine wastewater using biosynthesized reduced graphene oxide
Recycling rare earth elements (REEs) from sources of secondary waste such as REEs mine wastewater has emerged as a sustainable approach with both waste reuse and wastewater processing. In this study, green reduced graphene oxide (G-rGO) was prepared utilizing green tea extract with the advantages of being environmentally friendly, sustainable, and low cost. To understand how G-rGO functions, it was compared to commercial reduced graphene oxide (rGO), and the efficiencies in adsorbing Y(III) were 91.6% and 11.9%, respectively. This indicated there is a synergistic adsorption between the capping layer of G-rGO and rGO alone. G-rGO and rGO were characterized before and after exposure to Y(III). This comparison indicated that Y(III) was adsorbed on the surface of G-rGO through complexation and electrostatic interaction. The adsorption kinetics best fit the pseudo-second-order model and the Langmuir model isotherm model, with adsorption capacities of 24.54 mg g −1 . A probable adsorption mechanism of Y(III) by G-rGO was proposed, involving electronic complexation, electrostatic adsorption and ion exchange. Furthermore, the adsorption efficiencies of G-rGO for Y(III), Ce(III) and Zn(II) in mine wastewater were 22.1%, 89.1% and 14.6%, respectively. These results demonstrate that G-rGO has great potential in the recovery of REEs from mine wastewater.