This is a demo store. No orders will be fulfilled.

Integrated Cascade Nanozyme Remodels Chondrocyte Inflammatory Microenvironment in Temporomandibular Joint Osteoarthritis via Inhibiting ROS-NF-κB and MAPK Pathways

Advanced Healthcare Materials [2023]
Zhongyin Zhang, Lichan Yuan, Yufeng Liu, Ruobing Wang, Yihong Zhang, Yan Yang, Hui Wei, Junqing Ma
ABSTRACT

Temporomandibular joint osteoarthritis (TMJ OA) is a degenerative joint disease with no complete cure at present. Notably, the inflammatory microenvironment in TMJ OA is modulated by oxidative stress, which impacts cartilage metabolism, chondrocyte apoptosis, inflammatory cytokine release, and extracellular matrix (ECM) synthesis. Thus, it is reasoned that reducing excess reactive oxygen species (ROS) in the chondrocyte microenvironment may be an effective therapeutic strategy for TMJ OA. Recently, cascade nanozymes, including Pt@PCN222-Mn, have been exploited to treat ROS-associated diseases. Nevertheless, cascade nanozymes are not employed for TMJ OA therapy. To fill this gap, it is explored whether the Pt@PCN222-Mn cascade nanozyme could be applied to the treatment of TMJ OA. The in vitro results demonstrate that the Pt@PCN222-Mn nanozyme can inhibit the production of inflammatory factors, the degradation of ECM, and the apoptosis of chondrocytes by inhibiting the ROS-nuclear factor kappa-B (NF- κ B_ and mitogen-activated protein kinase signaling pathways. The in vivo results further demonstrate that the Pt@PCN222-Mn nanozyme can delay the progression of TMJ OA in the rat unilateral anterior crossbite model. It is believed that insightful perspectives on the application of nanozymes in TMJ OA will be provided here.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.