This is a demo store. No orders will be fulfilled.
Near-infrared photon upconversion and solar synthesis using lead-free nanocrystals
Near-infrared-to-visible photon upconversion holds great promise for a diverse range of applications. Current photosensitizers for triplet-fusion upconversion across this spectral window often contain either precious or toxic elements and have relatively low efficiencies. Although colloidal nanocrystals have emerged as versatile photosensitizers, the only family of nanocrystals discovered for near-infrared upconversion is the highly toxic lead chalcogenides. Here we report zinc-doped CuInSe 2 nanocrystals as a low-cost and lead-free alternate, enabling near-infrared-to-yellow upconversion with an external quantum efficiency reaching 16.7%. When directly merged with photoredox catalysis, this system enables efficient near-infrared-driven organic synthesis and polymerization, which in turn solves the issue of reabsorption loss for nanocrystal-sensitized upconversion. Moreover, the broadband light capture of these nanocrystals enables very rapid reactions under indoor sunlight. Extending the reach of ‘solar synthesis’ into the near-infrared may realize the century-long dream of conducting high-added-value chemical transformations using sunlight.