This is a demo store. No orders will be fulfilled.
Ultrathin Mo2S3 Nanowire Network for High-Sensitivity Breathable Piezoresistive Electronic Skins
Flexible piezosensing electronic skins (e-skins) have attracted considerable interest owing to their applications in real-time human-health monitoring, human–machine interactions, and soft bionic robot perception. However, the fabrication of piezosensing e-skins with high sensitivity, biological affinity, and good permeability at the same time is challenging. Herein, we designed and synthesized Mo2S3 nanowires by inserting ∞1[Mo2+S] chains between MoS2 interlayers. The resulting Mo2S3 nanowires feature high conductivity (4.9 × 104 S m–1) and a high aspect ratio (∼200). An ultrathin (∼500 nm) Mo2S3 nanowire network was fabricated using a simple liquid/liquid interface self-assembly method, showing high piezoresistive sensitivity (5.65 kPa–1), a considerably low pressure detection limit (0.08 Pa), and gratifying air permeability. Moreover, this nanowire network can be directly attached to human skin for real-time human pulse detection, finger movement monitoring, and sign language recognition, exhibiting excellent potential for health monitoring and human–machine interactions.